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ABSTRACT Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermedi-
ate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been
thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh
fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular
to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries.
Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that
they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and
particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of

suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle.

INTRODUCTION

Any pebble, leaf, or even animal taken from a pond or ocean
will host a myriad community of microscopic sessile sus-
pension feeders (1,2). These microscopic organisms live
attached to underwater surfaces and form an essential link
in the aquatic carbon chain by consuming bacteria and small
detritus and then, in turn, being eaten themselves by larger
organisms (3—6). As consumers of bacteria, they also play
a key role in processing waste-water in treatment plants
(7,8), and may also improve degradation of contaminants
from human-caused environmental disasters, such as oil
spills and sewage leaks (9-12). Choanoflagellates, one
type of suspension feeder that is primarily sessile (13),
have been estimated to filter between 1 and 25% of the
sea water in coastal areas each day (6,14). Some estimates
suggest that every fluid particle in such coastal areas may
pass through the filtering apparatus of a suspension feeder
at least once per day (14-17), and approximately half of
the suspension feeders considered in those estimates live
permanently or temporarily attached to substrates (17).
Such estimates of sea water filtration enhance our under-
standing of the contributions of sessile filter feeders to the
ecology of these systems and possibly to the effective
cleanup of human-introduced contaminants. However,
some of these estimates rely on measurements of fluid
flow near organisms that may not mimic fluid flow in natural
environments (16).

Microscopic suspension feeders, such as Stentor (18),
Opercularia (19), and choanoflagellates (6) are ~1 um to
a few hundred um in size and are composed of one to a
few cells. They use the motion of cilia or flagella to draw
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fluid toward themselves and feed from the passing fluid
(20-22). These organisms live in the regime of low
Reynolds number flow, which means that viscous forces
dominate and inertia is negligible (23). The Reynolds
number represents the ratio of inertial to viscous forces
and is defined as Re = pUL/u, where p is the density of
the fluid, U and L are typical velocity and length scales,
respectively, and u is the viscosity of the fluid. For a typical
suspension feeder, Vorticella, Re = 5 x 1073, In this article,
we focus on Vorticella as a model for many similar surface-
attached organisms.

Feeding at a small distance above a boundary in low
Reynolds number flow creates two challenges:

1. Viscous drag from the surface slows down the feeding
currents generated compared to those in free space, lead-
ing to less efficient feeding (13,24); and

2. Viscous eddies (i.e., regions of closed streamlines)
created by the interaction of filter feeding currents with
the boundary recirculate fluid past the feeding apparatus
even after nutrients have been removed (19,25-28).

For most sessile filter feeders, the effect of the first challenge
(viscous drag from the surface) is reduced greatly by
moving the cell body further from the surface, usually
with a stalk (13,24).

There are also several theoretically identified adaptations
for how sessile suspension feeders deal with the second
challenge (viscous eddies), including rapidly changing dis-
tance to the substrate (26,27) and neighbors intermittently
switching their feeding apparatuses on and off (19). All of
the theoretical proposals of which we are aware model the
organism as drawing fluid perpendicular to a plane surface
(19,26,27,29). However, we observe that Vorticella
convallaria appear to spend most of their time feeding at
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Suspension Feeders near Boundaries

an angle to the substratum to which they are attached (see
Fig. 1); similarly, Hartmann et al. (19) observe Opercularia
periodically angling away from the perpendicular. Could
this angled orientation be a strategy to increase nutrient
uptake? Feeding at an angle does increase the speed of the
feeding current by reducing the viscous drag from the sur-
face, but this effect is predicted to be small (~10%) for
organisms of similar size to Vorticella (13), and it is unclear
how it interacts with recirculation in the flow. However, if
feeding at an angle also alters the shape of streamlines
and amount of recirculation, the effect on nutrient uptake
could be much greater.

To determine if angled feeding could be a strategy to
increase nutrient uptake, we first use a torque calculation
to show that experimental observations of living Vorticella
feeding at an angle are likely due to active behavior and
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FIGURE 1 (a) Photos of a single Vorticella convallaria taken from a
time-lapse video (see Movie S1 in the Supporting Material). The cilia are
attached to a ring at the upper end of the cell body and push fluid parallel
to the long axis of the cell body. Note that in the first frame (0 s), the organ-
ism is oriented so that it pushes fluid perpendicular to the surface of attach-
ment (the darker area below the organism), and that the organism’s
orientation to the substrate changes with time. (b) Plot of the angle of the
Vorticella body to the vertical, 6, as a function of time. (Middle lines) 0,
whereas the outer lines and shading are the error on 6. (Black lines)
From video of Vorticella in culture fluid with nutrients; (gray line/red
online) from video of Vorticella in culture fluid without nutrients. Black
lines correspond to the images in panel a with a time offset: # = 0 s in panel
a corresponds to r = 110 s in panel b. To see this figure in color, go online.
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are not a passive hydrodynamic response to the flow. We
then calculate the total flux of food particles or dissolved
nutrients as a function of time and feeding angle for model
suspension feeders near a planar boundary. We find that
model suspension feeders can greatly increase their nutrient
uptake by feeding at an angle to the surface, even for
nutrients that can diffuse.

MATERIALS AND METHODS
Vorticella body angle observations

V. convallaria were cultured as described by Nagai et al. (30) until a few
organisms, isolated from each other, were observed attached to the thin
edge of a cover glass of thickness 145 + 25 um. The cover glass with
the attached organisms was sandwiched between two clean cover glasses,
and placed in a petri dish filled with either culture fluid or with mineral
water without nutrients. A single organism was then observed using an
Eclipse TE 2000-U inverted microscope (Nikon, Melville, NY) at 10x
magnification, recording at 1 frame per s. Two organisms were observed
in this way—one in the presence of culture fluid (with nutrients) and one
in mineral water (without nutrients). The effective length of the body
axis and the angle that the body makes with the vertical, §, were determined
manually for every 10th frame. From these measurements, we extract both ¢
and also ¢, the angle the body axis is rotated in or out of the plane of view as
a function of time. The results for # are shown in Fig. 1 b.

Force of Vorticella

Lower and upper bounds for the force on the fluid generated by a feeding
V. convallaria were determined using flow field data from experiments
(28) and also a V. convallaria observed in the swimming phase of its life.
The experimentally measured flow field for an organism squeezed between
two slides with no other boundaries nearby was compared to the calculated
flow field for a stokeslet between two parallel no-slip boundaries (described
in further detail in Pepper et al. (28) Appendix A) and the stokeslet force that
resulted in the best match between the two flow fields was determined using
least-square fitting. The stokeslet force was found tobe 5 x 10~'" N using the
flow field from a single representative measurement. Modeled and observed
flow fields are shown, respectively, in Figs. 2 @ and 5 b in Pepper et al. (28)
and reproduced in Fig. S1 in the Supporting Material.

An upper bound of the force generated by a typical V. convallaria was
estimated by measuring the swimming speed of a single V. convallaria
observed during the swimming portion of its life cycle. This organism
was video-taped by chance in the experiments described in Pepper et al.
(28). The drag on a spherical object traveling at speed u is F = 6mwuau,
where u is the viscosity of water, and a is the radius of the sphere. From
the observed swimming speed (4 = 400 um/s), radius (¢ = 65 um), and
the viscosity of water (u = 1 X 1073 Pa - s), we can estimate the force
generated by the organism as approximately 5 x 107'° N. This rough esti-
mate of the force can be considered an upper bound for the force generated
by a feeding organism. V. convallaria grow a second band of cilia, which
they use for locomotion during the swimming phase of their life (31). These
lower and upper bounds for the force generated by V. convallaria match
well the force of ~1 x 107"'=1 x 107" N generated by Opercularia
asymmetrica, a ciliate of similar size to Vorticella (19).

Scaling

Throughout this article we use dimensionless variables. For reference, we
list here the scalings used. Lengths are scaled by 4, the distance from the
stokeslet to the wall. Velocities are scaled by «/(uh), where w is the
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viscosity of the fluid, and « is the force the stokeslet exerts on the fluid.
Total mass fluxes are scaled by (cha)/u, where c is the concentration of
nutrients in undepleted fluid (or at infinity). Torques are scaled by ah. Times
are scaled by (uh?)/o. For Vorticella we approximate & = 100 um and o =
5 x 107" —5 x 107'° N. This approximation gives a velocity scale of
approximately 500-5000 um/s, a total mass flux scale of approximately
¢ x (5-50 nL/s), a torque scale of approximately 5 x 107'* —5 x 107"
Nm, and a timescale of ~0.02—0.2 s.

TORQUE ON A MODEL VORTICELLA

Vorticella spp. can change their feeding angle with respect to
the substratum (Fig. 1), but is this change a passive response
to the feeding flow that the organism generates, or an active
behavior on the part of the organism? To answer this ques-
tion, we calculate the hydrodynamic torque on a model Vor-
ticella from the fluid flow it generates as a function of the
organism’s feeding angle. We approximate the feeding flow
generated by an individual angled suspension feeder as a
point force, or stokeslet, pushing fluid at some angle relative
to a flat plane (Fig. 2). A stokeslet is a simple and common
model for a suspension feeder (13,19,26,27,29,32): it cap-
tures the physical feature that the organism is pushing fluid
in a particular direction with a particular force, but does not
model the body size or shape of the organism. The stokeslet
flow model is described in more detail in Appendix A.
With the flow field determined by the stokeslet flow model,
the torque on the organism is calculated by approximating the
body of the Vorticella as a prolate ellipsoid of revolution
centered on the stokeslet (see insetin Fig. 3 for the geometry).
Here the stokeslet image system (see Eq. 7) plays the role of
an external flow field and so, depending on the orientation of
the stokeslet, may produce a torque on the ellipsoid. The
torque on this ellipsoid due to an external flow field is

T = 8nd’ [Y°Q* + (X - Y )d(d- Q%) +Y"d

x (E* - d)], 40
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FIGURE 2 A schematic of the stokeslet model for Vorticella. (a) Image
of a Vorticella convallaria; scale bar is 100 um. (b) Sketch of a Vorticella
showing stalk, cell body, and cilia. Model elements are overlaid. (c) Stokes-
let model for a Vorticella. The stokeslet is a point force at the origin of the
arrow (red online) at a distance i from the no-slip boundary (indicated by a
thick line). The arrow points in the direction in which the stokeslet forces
the fluid at an angle 6 from the vertical. (Dashed line) The feeding disk,
radius r,. In the image in panel a, & = 100 um and r;, = 15 um. To see
this figure in color, go online.
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FIGURE 3 Torque on a model ellipsoid with eccentricity e = 0.6 as a
function of forcing angle . Representative Vorticella body positions are
shown for four values of . Positive torque points into the page and would
result in clockwise rotation. Rotation directions are illustrated using circles
with an arrow pointing in the direction of rotation. The torque and a are
nondimensionalized as described in the Materials and Methods. In dimen-
sional units, the maximum torque of 0.06a” is 1.35 x 10~'® Nm if we as-
sume i = 100 um, that @ = 0.3, and that the Vorticella pushes the fluid with
a force of 5 x 107! N. (Inser) This illustration shows our ellipsoid model
for Vorticella. The arrow (red online) represents the direction of the stokes-
let that generates fluid flow. To see this figure in color, go online.

where a is the length of the semimajor axis of the ellipse,
d is a unit vector that points along the semimajor axis of
the ellipse,

Q" = —-(Vxu”)

N —

is the vorticity,

o Lo o T
E* = 2(Vu + [Vu®]")
is the rate of strain tensor, and u” is the external flow undis-
turbed by the ellipsoid and evaluated at the location of the
center of the ellipsoid (33). Here X€, YC, and Y* are scalar
resistance functions that depend only on the eccentricity
of the ellipse as described in Appendix B. All quantities
in Eq. 1 are scaled as described in the Materials and
Methods.

Without loss of generality, we assume that both the sto-
keslet and the symmetry axis of the ellipsoid lie in the x-z
plane as shown in the inset of Fig. 3. We then find that the
torque exerted by the stokeslet flow (see Appendix B) on
the body of the organism is

3 1
T, = —ZaSYH <§sin3 6 + sind cos26‘> , ()

where 0 is the angle between the stokeslet and the vertical.
This calculation indicates that an upside-down orientation
of the Vorticella is stable, as shown in Fig. 3. If the organism
tilts at any angle, the hydrodynamic torque pushes it back
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toward an upside-down orientation (¢ = @ or —m). This
result indicates that the motion documented in Fig. 1 is
likely an active behavior on the part of the Vorticella. How-
ever, there is a span of time on the left-hand side of the video
(see Movie S1 in the Supporting Material) when the Vorti-
cella seems to be stuck in a nearly inverted position, which
may be a passive response to hydrodynamic torque. The
maximum torque exerted on the organism by the stokeslet
flow field is between 0.03 and 0.75% of the torque that
the organism could apply at the connection between the
body and the stalk using the same force directly (0.03%
assumes a = 0.1 and 0.75% assumes a = 0.5; both model
the organism as an ellipsoid with eccentricity of 0.6).

We note that the Vorticella in Fig. 1 and Movie S1 are
imaged in thin vessels (= 145 um thick), and that the plane
parallel boundaries of the sandwiching cover glasses will
quantitatively affect the magnitude of the hydrodynamic
torques computed above (28). However, due to symmetry
of the parallel-plane geometry, the presence of these walls
alone does not give rise to any torque on the organism.

FEEDING WITHOUT NUTRIENT DIFFUSION

To determine if the observed behavior of feeding at an angle
is beneficial for nutrient uptake, we use our stokeslet model
to determine the total flux of nutrients to the organism. The
total flux of nutrients available to the organism is monitored
through a feeding disk that represents the area that the
organism can reach with its cilia. The feeding disk is in a
plane perpendicular to the direction of the stokeslet, and
centered on the stokeslet (see Fig. 2), and the model organ-
ism feeds by depleting the fluid of nutrients as the fluid
passes through this disk. For a typical Vorticella, the cilia
sweep out a disk with radius ~15 um that is located ~100
um away from the substrate of attachment.

A qualitative sense of how turning at an angle can in-
crease nutrient uptake can be seen by looking at representa-
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tive particle trajectories in the flow for four stokeslet angles
(Fig. 4). For the perpendicular stokeslet (Fig. 4 a) all of the
fluid particles passing through the feeding disk recirculate,
so as the model organism feeds, first the edges of the feeding
disk start to see fluid that has completed one turn through the
eddy and been depleted of nutrients; as time progresses,
more of the feeding disk sees fluid that has passed through
before. Eventually, in the absence of diffusion, no fresh fluid
is passing through the feeding disk. As the stokeslet angle
increases (Fig. 4, b and c), fewer of the streamlines that
pass through the feeding disk recirculate, and flux is more
stable with time. At some angle, which will depend on the
size of the feeding disk, none of the feeding streamlines
that pass through the disk recirculate, and we expect the
flux of nutrients will not decrease with time. We note that
the absence of eddies in the flow for the case of a stokeslet
parallel to a plane boundary (Fig. 4 d) has been shown pre-
viously (25).

We model the time dependence of the total flux of nutri-
ents by seeding the feeding disk with a grid of fluid particles
and following the trajectories of these nondiffusing particles
in time (see Fig. S3). When a particle returns to the disk, the
grid to which it returns is no longer receiving nutrients. The
total flux of nutrients, Q, is defined as

0= /cu-dA, 3)
4

where u is the velocity field of the fluid and A is the area of
the disk. The concentration in this integral, ¢, depends on the
location on the disk, and is either the uniform concentration
of nutrients in undepleted fluid (which could include detritus
and bacteria), or zero, depending on whether the fluid parti-
cle at the relevant grid location has recirculated.

Each square of the grid contributes to the total nutrient
flux an amount cfu(x,) - f, where ¢ is the square-edge

FIGURE 4 Example fluid particle trajectories
for a stokeslet above a plane wall at different
angles, 6, shown in the plane of mirror symmetry.

The stokeslet direction is represented by an arrow
(red online) with origin at the location of the sto-
keslet (x = y = z = 0). The orientation of the

feeding disk is shown as a line (blue online). The
size of the line is not representative of the modeled
feeding disk size, which for the given distance from
stokeslet to wall, would be smaller. The no-slip
wall is at z = —1. To see this figure in color, go
online.

Biophysical Journal 105(8) 1796—1804



1800

length, x.. is the position of the point at the center of the grid,
and fis a unit vector pointing in the direction of the stokeslet
(i.e., orthogonal to the plane of the square). We start a series
of fluid particles at the center of each grid and use the known
velocity field to follow these fluid particles in time as they
move with the fluid surrounding the Vorticella model (see
Fig. S3). If at any time a fluid particle returns to the feeding
disk, the concentration of nutrients is set to zero in the grid
square from which that fluid particle originated, represent-
ing complete depletion of nutrients. We assume a uniform
concentration of nutrients in the fluid before the Vorticella
starts feeding and that when a parcel of fluid passes through
the feeding disk, the Vorticella depletes it entirely of useful
nutrients.

We keep track of the total nutrient flux through the disk as
a function of time after the Vorticella begins feeding, and
perform the same calculation for feeding models oriented
at various angles to the wall. We choose a stalk length 10
times longer than the Vorticella body radius as in Upad-
hyaya et al. (34). Because the cilia can reach beyond the
body radius we choose a feeding disk of radius r; = 0.15,
and break it up into a grid of 1484 elements. We choose
this number of elements to balance accuracy and computing
time and find that the shape of the curves is only weakly sen-
sitive to grid resolution. Coarser grids overestimate total
mass fluxes and the time for the first particle to return to
the disk; we choose our grid to match the analytical total
mass flux for the perpendicular stokeslet case within 10%.
This grid also matches the time for the first particle to return
to the disk within 11% for 6§ = 0.1, and with increasing
accuracy at smaller angles, matching the exact result for
0 = 0. Our results are qualitatively similar regardless of
the specific disk size, as shown in the Supporting Material.
We also show in the Supporting Material that the stokeslet
model for a Vorticella is very similar with regard to feeding
fluxes to a spherical model that takes into account further
details of the organism (i.e., body size). To ensure that we
end up with a regular grid of points returning and depleting
the concentration in each grid square, in our actual algo-
rithm, we measure recirculation time for each grid point
by running time backward (35).

Results and Discussion

Overall, the model Vorticella has much greater access to
nutrients when at an angle than when perpendicular to a
wall (Fig. 5). We find that those model organisms that feed
at an angle begin with a slightly higher total flux of
nutrients, that this flux dies off more slowly in time, and
that the overall decrease in total nutrient flux is less than
for perpendicular feeders. For sufficiently large angles, the
total nutrient flux remains constant in time and there is no
recirculation of fluid through the feeding disk. The total
nutrient flux at long times (the right side of Fig. 5) for the par-
allel stokeslet is approximately six times that for the perpen-
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FIGURE 5 Decrease in total nutrient flux with time for different feeding
angles. Different lines (color online) represent model organisms feeding at
different angles from the vertical. Times and total nutrient fluxes are non-
dimensionalized as described in the Materials and Methods. For Vorticella
the timescale is ~0.02-0.2 s. To see this figure in color, go online.

dicular orientation, indicating a large benefit (>500%) from
feeding at an angle due to reducing the recirculation in the
flow. This long time point is set by the duration of our simu-
lation; if the simulations were run for a longer time, the total
nutrient flux for the perpendicular case would decrease even
further, eventually going to zero as time goes to infinity.
Although the benefit at long times of around 500% comes
from an artificial time point, steady-state calculations that
include diffusion (done in the following section) show a
similar benefit for consumption of nonmotile bacteria.
Feeding at an angle also increases nutrient uptake by
reducing the effect of viscous drag from the surface,
increasing the overall speed of fluid flow and the flow of
fluid through the feeding disk. The effect occurs regardless
of nutrient depletion, and does not change in time; thus we
can determine its contribution to the overall benefit by look-
ing at early time points before the fluid has recirculated
through the feeding disk and before nutrients have been
depleted. The total nutrient flux at the start time (the left
side of Fig. 5) is 1.06 times more for the parallel stokeslet
than the perpendicular stokeslet, indicating that there is a
small benefit (~6%) from feeding at an angle due to
reducing viscous drag and increasing the fluid velocity
and net flow of fluid through the feeding disk. This small
benefit matches earlier predictions (13), and shows that as
feeding time increases and the organism could begin to
see recirculated fluid, the primary benefit to feeding at an
angle comes from reduced recirculation. The total nutrient
flux at the start time can also be thought of as the clearance
velocity averaged over the feeding disk, a common experi-
mental measure to determine how much water is filtered
by such organisms (5,16). Clearance velocity is only ~6%
different between the parallel and perpendicular orientations
and actual nutrient uptake at long times is >500% different
due to the decrease of total nutrient flux. Because fluid recir-
culates through the disk for the perpendicular feeder, esti-
mates of clearance velocities made using measured fluid
velocities near organisms without taking into account the
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effect of recirculation may significantly overestimate the
amount of water cleared by these organisms if the organisms
spend time feeding in a near-perpendicular orientation.

Even in cases of recirculation, the total nutrient flux does
not start to decrease until the smallest closed eddy that inter-
sects the disk has turned over once, which is why the decay
in this flux reported in Fig. 5 only begins at times greater
than O(10%). Using a feeding force and model dimensions
appropriate for sessile suspension feeders, the time for this
turnover is 2 min to 9 h. The large time range results from
the range of estimates for the forces generated by these
organisms, and the range of the ratio of body size to stalk
length between individual organisms in a species. For
example, we estimate that for Vorticella, the turnover time
ranges from 20 min to 6 h (A = 100 um, r; = 0.15, @ =
5x 1071925 x 107! N); for choanoflagellates, the range
is 6 min to 3 h (h = 10-20 um, r;, = 0.25-0.15, a =
2.4 x 1072 N (36)); and for P. vestida, the range is 2 min
to 9 h (h = 10-30 um, r; = 0.25-0.1, a = 10 x 107" N
(5)). We find that the time for the smallest eddy to recircu-
late decreases for larger ratios of feeding disk radius to stalk
length as r, * (Fig. 6); see the Supporting Material for more
information. Larger feeding disks intersect more of the
feeding eddy, so have shorter recirculation time.

FEEDING INCLUDING NUTRIENT DIFFUSION

The times for the smallest eddy to recirculate are relatively
long, and we might expect diffusion of nutrients across
streamlines to replenish the depleted eddies. We therefore
include a second model, which includes diffusion of nutri-
ents. In this model, the suspension feeder is again modeled
as a stokeslet above a boundary, but instead of fol-
lowing fluid particles in time, we numerically calculate
the steady-state concentration of food particles or dissolved
nutrients in a large simulation domain surrounding the
organism. The total flux of food particles or nutrients is
calculated over a sphere surrounding the model organism.

10

10

eddy recirculation time

_2 0

10 10
radius of feeding disk (rd)

FIGURE 6 Eddy recirculation time as a function of r,, the radius of the
feeding disk scaled by h. For this calculation the stokeslet is forcing fluid
perpendicular to the boundary, # = 0. Start positions are all in a plane
that includes the stokeslet and is parallel to the boundary, and time is scaled
as described in the Materials and Methods.

1801

Again modeling the organism as a stokeslet pointing
at some angle above a plane boundary, we solve for the
steady-state concentration of diffusing nutrients using the
advection diffusion equation

|-

u-Ve = Pev c, @)
where u is the fluid velocity, and ¢ is the concentration of
nutrients or food particles in the fluid. The equation is scaled
as described in the Materials and Methods. With those
scalings, Pe = a/uD, where « is the stokeslet force, u is
the viscosity of the fluid, and D is the diffusion constant
of the nutrient or food particle being consumed.

We solve for ¢ in a box above the plane boundary using
finite-element analysis with the software COMSOL
MULTIPHYSICS (COMSOL, Palo Alto, CA) (see
Fig. S2). We enforce no flux across the symmetry plane
and on the substrate boundary, and set ¢ = 1 on the other
four faces of the box. Additionally, we set ¢ = 0 on a spher-
ical capture surface surrounding the stokeslet. The total flux
of nutrients across this sphere is calculated using a Lagrange
multiplier to determine feeding success as a function of sto-
keslet angle. To achieve true first-order accuracy in our flux
computations, we extracted the flux from the Lagrange
multiplier used by COMSOL to enforce the ¢ = 0 condition
on the spherical capture surface. We use a feeding sphere of
radius ry = 0.1, which is slightly different than the feeding
disk, r; = 0.15, used in our model without diffusion. The
total simulation has 162,501 P1 elements, including 232
elements on the boundary of the sphere. We choose a
feeding sphere in this simulation rather than the feeding
disk used in the no-diffusion case for computational ease,
but we do not expect this modest difference between models
to affect our qualitative conclusions.

The size of the simulation box is set such that the effect of
the chamber size on the total flux of nutrients to the organ-
ism was <1%. The resulting dimensions were 1000/ for the
height of the box (distance between the plane boundary and
the boundary above it), and 2000/ for the length and width
of the box (see Fig. S2).

Results and Discussion

In our advection-diffusion model, the relative importance of
advective transport of nutrients to diffusive transport is
captured by the Péclet number, Pe = LU/D, where L is a
typical length scale of the flow, U is a typical velocity, and
D is the diffusion coefficient of the nutrient or prey
particle of interest. Large Pe indicates that effects from diffu-
sion are small. For feeding Vorticella, the Péclet number for
nonmotile bacteria ranges from 10° to 10°. Consistent with
earlier definitions, we choose L=h, and U=«a/8mwuh. This
range for Pe assumes bacteria diffuse as spheres of the
appropriate size (0.1-10 um) and the diffusion constant is
calculated using the Stokes-Einstein relation (37), yielding

Biophysical Journal 105(8) 1796—1804
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D=2x10"m%*sand D =2 x 10~"* m?%s for 0.1 um and
10 um spheres, respectively. For motile bacteria and small
diffusing nutrient molecules, D = 10~ ' m?/s (37), yielding
Pe = O(10). With these scales in mind, our simulations
shows that for Vorticella feeding on nonmotile bacteria,
feeding at an angle to the substratum is beneficial (Fig. 7).
At Pe = 103, the model organism can access about 4 times
more nutrients when feeding parallel to the substratum
than when feeding perpendicular. However, Fig. 7 also
shows that for food sources that diffuse more quickly,
such as motile bacteria and dissolved molecules, diffusion
dominates, and the model suspension feeder no longer
derives significant benefit from feeding at an angle. Note
that even in the regime of high Péclet number, where we
expect nutrient transport to be dominated by advection
(i.e., flow generated by the organism), a small amount of
diffusion is necessary to provide any steady-state nutrient
flux to organisms feeding perpendicular to the substrate.
One of the most abundant photosynthetic organisms on
earth, Procholorococcus, is a nonmotile bacteria that lives
in the ocean and has a diameter of ~0.5 um (38). These abun-
dant organisms would therefore have a Péclet number of
around 2 x 10? in the Vorticella’s feeding flow. Procholoro-
coccus are particularly dominant in nutrient-poor environ-
ments, where sessile suspension feeders might have few
other sources of nutrients (38). Overall, our advection-diffu-
sion model shows that feeding at an angle is beneficial for
some plentiful food sources for Vorticella, so is likely a
good strategy for these organisms to access the maximum
amount of food. It also indicates that when estimating the
amount of fluid such organisms clear in a given time, both
the typical orientation of the organism relative to the sub-
stratum and the diffusivity of the food or contaminant of in-
terest should be taken in to account for more accurate results.

DISCUSSION

It is important to note that, given the slow timescale for the
eddy to turn over, the benefits of feeding at an angle are

6
No Diffusion
5 i
Pe = 1000
54 ’
G
3
2 Pe =100
Pe =1
1 n n
0 0.5 1 1.5

0

FIGURE 7 Steady-state feeding flux as a function of feeding angle, 6,
measured from the vertical. Total nutrient flux is normalized by the total
nutrient flux at § = 0 for each case. The No-Diffusion case is taken from
the final time point in Fig. 5. To see this figure in color, go online.

Biophysical Journal 105(8) 1796—1804

Pepper et al.

likely most important in environments with very slow to
no external flow, such as ponds, puddles, and protected areas
with dense vegetation. These are all common habitats for
sessile suspension feeders, and there is some evidence that
these organisms may be more abundant in areas of slower
flow (39).

Additionally, in our calculations and experiments we treat
a single Vorticella above a flat wall. However, in nature, the
situation could be quite different. The Vorticella could have
nearby neighbors feeding in a similar manner; it could be
confined by other nearby surfaces; or could be on a surface
that is not locally flat. All of these situations would affect the
flux of nutrients that the feeding organism can access, and
provide interesting avenues for further study.

We have studied feeding in an idealized situation where
nutrients are distributed homogeneously. Real filter feeders
live in spatially patchy and temporally fluctuating environ-
ments, raising the possibility that feeding angle may
be actively modulated similar to locomotory infotaxis
strategies (40,41). Indeed, we observed that, in addition to
varying the polar feeding angle, 6, Vorticella also vary the
azimuthal angle, ¢. This rotation would make sense as an
active behavior to consume nutrient sources from all direc-
tions around the organism. Preliminary results taken from
the video available in the Supporting Material give a corre-
lation time for the rotation of ~2 min for the Vorticella that
has access to nutrients in the culture fluid, and ~5 min for the
one that has no access to nutrients. Although shorter than the
typical eddy turnover time, these times are reasonable
for increasing nutrient uptake. Future studies could deter-
mine if this rotation time is optimized for nutrient uptake,
and if it is consistent among a population of organisms,
between different species, or between the same organisms
in different geometries.

CONCLUSION

Observations of living Vorticella show that they feed at an
angle to the surfaces to which they are attached. Our calcu-
lations show that the hydrodynamic forces on a simple
model organism stabilize it in a vertical orientation, so
changes in orientation angle for living Vorticella are likely
the result of active behavior. We show that, by feeding at
an angle, organisms solve the problem of eddies that arise
from forcing fluid near a boundary. We further show that
angled feeding increases nutrient uptake for several model
organisms feeding on biologically relevant food with slow
diffusion, such as nonmotile bacteria. For other nutrients
that diffuse more rapidly, such as small molecules, feeding
at an angle is only slightly favored.

Our work resolves an open question of how attached sus-
pension-feeding organisms escape physical limitations asso-
ciated with feeding near surfaces. These data also reveal the
high degree of sensitivity of clearance rates (e.g., of bacteria
and potentially of contaminants like oil contained in the
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bacteria) to organism behavior and hydrodynamic con-
straints on their feeding. Estimates of clearance velocities
made using measured fluid velocities near organisms
without taking into account the effect of recirculation may
significantly overestimate the amount of water cleared by
these organisms. We anticipate that our results will also be
a starting point for exploring optimization strategies that
sessile microorganisms can employ to feed on different
prey types and in heterogeneous environments.

APPENDIX A: STOKESLET ABOVE A PLANE
BOUNDARY

We solve for the velocity, u, for a stokeslet a distance & above a plane
no-slip wall exerting a force « on the surrounding fluid and pointing in
direction f = (f,, f}, f-) where f is a unit vector. For low Re flow, we satisfy
the Stokes equation and continuity equation

V’u+fo(x —xg) = Vp and V-u =0, 5)

where X, is the position of the stokeslet, and where we have scaled all
lengths by h, velocities by «/(uh), and stresses by of/h* where u is the vis-
cosity of the fluid. The solution for a stokeslet at an angle above a no-slip
boundary is well known to be the solution for a stokeslet in free space plus
an image system consisting of a stokeslet, a source dipole, and a stokeslet
doublet (42—44). The velocity is given by a Green’s function solution (44)

1
u(x) = - G"(x,x), ©)

where X, is the position of the stokeslet, with

GW(X7 XO) = GS (Xs) - GS (Xim) + 2GD (Xim) - 2GSD (xim) ) (7)

where we define position relative to the stokeslet, X; = X — Xo, with X =
(0,0,1) and position relative to the image, X;,, = X — X", where xy"" =
(0,0,—1). The components of the above equation are the stokeslet term,

r Exx @®)

r r3

GS(X) =

; the image stokeslet term, GS(xim); the dipole term,

f,‘m S(f,m . X)X

where r = |x

G'(x) = F——"5— ©)
where fi,, = (f.. fi» —f2); and finally the stokeslet doublet term,
~ fim.ix_ fim.Xi

G (x) = (x-2)G"(x) +( ) 3( ) . (10)

r

where X = (x, y, 2) (44). We note that while we use the same notation as
Pozrikidis (44), our Green’s functions are vectors rather than tensors, and
we have introduced the vector f;, to simplify sign conventions.

APPENDIX B: TORQUE ON AN ELLIPSOID IN A
STOKESLET FLOW FIELD

Here we calculate the torque on an prolate ellipsoid of revolution with
semimajor axis length ¢ and semiminor axis length b centered on a stokeslet
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above a plane boundary. The unit vector along the symmetry axis of the
ellipse, d, and the direction of the stokeslet force, f, point in the same direc-
tion. Kim and Karrila (33) use a singularity representation to solve for the
hydrodynamic force, torque, and stresslet exerted by the fluid on a moving
prolate spheroid. If the fluid has an undisturbed velocity u®, the torque is
given by

Ti = 87r,ua3 [Xcdidj + YC (6,‘1' — d,d])} (Q;o - (L)j)
— 877#(13 YHE',jjd]dkE;: ; (1 1)
where

Q% = ~(V x u”)

N =

is the vorticity, w is the rotational velocity of the ellipse, and

1

E* = E(Vuoo + [Vu]")

is the rate of strain tensor, and where the velocity is evaluated at the center
of the ellipse (33). The resistance functions depend on the eccentricity of
the ellipse,

va — b2

e =—————",
a
and are given by
4e3(1 — &%)
X6 = -+ "7 12
3[2e — (1 — )L} (122)
4e3(2 — &%)
Y€ = 12
3[—=2e+ (1 + )L (120)
4¢3
Y? = 12
3[—2e + (1 + AL (120)
Lie) = In(+¢ (12d)
N 1—e)

For a stationary ellipsoid, w = 0, and Eq. 11 simplifies to Eq. 1 in the main
text if lengths are scaled by £, velocities are scaled by a(uh), and torques
are scaled by ah, where « is a representative force scale (i.e., the strength
of the stokeslet if u® is the flow field of a stokeslet). Here the stokeslet
image system (see Eq. 7) plays the role of an external flow field and so,
depending on the orientation of the stokeslet, may produce a torque on
the ellipsoid.

SUPPORTING MATERIAL

Eight figures, Validation of Stokeslet Model, Effect of Disk Size,
Sphere above a Plane Boundary, Reference (45) and one movie are avail-
able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)
00976-4.
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I. SUPPLEMENTARY FIGURES

Figure S.1. Modeled and observed flow fields used to de-
termine the force of Vorticella. Experiments and calculations
are described in further detail in [1] (a) Example fluid particle
trajectories in the calculated flow field for a stokeslet between
two parallel no-slip boundaries. Lengths are scaled by the
distance between the no-slip boundaries. Reproduced with
permission from [1] Fig. 2. (b) Tracer particle trajectories
from an experimental measurement of a Vorticella squeezed
between two slides with no other boundaries nearby. Lengths
are scaled by the radius of the Vorticella. The circle shows
the position and radius of the Vorticella. Reproduced with
permission from [1] Fig. 5.

1000h

1000h

Figure S.2. Schematic of the model geometry used in our ad-
vection diffusion model (not to scale). The substrate bound-
ary is the bottom of the box (not visible from this angle).
Half of the feeding sphere can be seen on the symmetry plane
(the front face of the box). The stokeslet is represented by a
whilte arrow at the center of the feeding sphere.

Figure S.3. Schematic of the method for total nutrient flux
calculation. The stokeslet is not pictured but is located at the
origin. A disk surrounding the stokeslet is broken up in to a
two-dimensional grid; at the center of each grid square we
track a fluid particle (start position represented by a small
open circle). Particle tracks are shown as thick lines (blue
online). For clarity, only tracks for particles that begin at
xz = 0 are shown. We have stopped the simulation in the
middle of evolution to show an intermediate step. Squares
colored white have a nutrient flux greater than zero while
gray squares have zero flux since the fluid passing through has
already been depleted of nutrients. Stokeslets are at angles of
(a) 0, (b) 0.12 radians, (c) 0.3 radians. Disk size is enlarged
in relation to distance from the boundary to illustrate the
method. Box boundaries are a guide to the eye; the only
surface present is the lower boundary at z = —1 and is not
shown.



without nutrients

Figure S.4. Movie S1: Video of two V. convallaria. Video
taken at 1 frame/s and displayed at 30 frames/s.

II. VALIDATION OF STOKESLET MODEL

Although previously shown to agree well with experi-
mentally measured velocity fields [1], the stokeslet model
neglects details of flow near the cell body. To show that
neglecting these effects does not change our results, we
compare the stokeslet model to a more realistic model
where the Vorticella is represented by a sphere with a
tangential velocity on the boundary, rather than as a
point force. The geometry and calculation are described
in §IV. Both sphere and stokeslet models force fluid per-
pendicular to the surface. To make sure that the two
models match well in general, we compare them for sev-
eral different values of 4, the radius of the collection disk,
and several different values of a, the radius of sphere. We
choose 14 in approximately the biologically relevant range
0.07 < rq/h < 0.7, and assume that in nature the ratio
a/h varies from approximately 1/3 — 1/15 [2] and that
the ratio of r4/a varies between one and two. In all tests
we place the feeding disk at a distance 1.5a above center
of the model. We find for all parameters that the behav-
ior of the two models matches well. We show this match
for some example cases in Fig. S.5.

IIT. EFFECT OF DISK SIZE

Here we assess the effect of changing the size of the
feeding disk. We find that the behavior as a function
of changing 0 is qualitatively the same for feeding disks
both double and half the size of the disk used in Fig. 5
in the main text as shown in Fig. S.6. For most of the
parameters a good collapse of the time for the smallest
eddy to recirculate for different values of r4 and 6 can be
achieved through simple power-law scalings as shown in
Fig. S.7. This power law behavior is an intriguing avenue
for further study.

While quantitative measures of nutrient acquisition
change with different collection disk sizes, angled feed-
ing always increases nutrient uptake for all biologically
relevant disk sizes.

0.08 ry/h =0.7,a/h = 0.1

0.06

flux

0.041 /h=0.16,
ath = 0.1

0.02

(b) 0.06

0.05f

0.04}

flux

0.037

0.02¢

0.017 ¢ jh = 1/10, arh = 1/1\

10° 10"

time

Figure S.5. Total flux of nutrients versus time after feeding
begins for sphere and stokeslet models. Solid lines: sphere
model. Dashed lines: stokeslet model. Different shades of
gray represent ratios of rq/h. (a) All lines have a/h = 0.1,
rq/a is varied. (b) Both lines have rq4/a = 1.5, a/h is varied.
Times and total nutrient fluxes are non-dimensionalized as
described in the “Scaling” section of Materials and Methods
in the main text.

IV. SPHERE ABOVE A PLANE BOUNDARY

To calculate the flow around a sphere with radius a
above a plane boundary as in Fig. S.8 we follow [1] Ap-
pendix C, but for ease of comparison to the stokeslet
model in Appendix A of the main text of this paper we
change variables and scaling slightly. From [1] we sub-
stitute 5 — h and y — z, and we also scale velocities
by «/(pa) rather than ug. We note that for this section
lengths are scaled by a, rather than by h as in the rest of
the paper. Most equations remain identical to [1] other
than the change of variables. However, the new scaling
changes the form of [1] equation C10 to:

U(p,0.h) =95 (p,0) =PV (p,0).  (S.1)
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Figure S.6. Total flux of nutrients versus time after feeding
begins for different orientation angles, and with rq = 0.3 in (a)
and rq = 0.075 in (b). Different lines (color online) represent
model organisms feeding at different angles from the vertical.
Times and total nutrient fluxes are non-dimensionalized as
described in the “Scaling” section of Materials and Methods in
the main text. For Vorticella the time scale is approximately
0.02—0.2 seconds. The feeding disks in (a) and (b) are broken
up in to a grid of a grid of 1142 elements.

As in [1], this approximation satisfies without error the
no-slip boundary condition at z = —h/a, but has errors
of order a/h and (a/h)? for u, and ug, respectively.

By specifying the net force applied to the fluid by the
sphere, we have determined (to first order in a/h on the
sphere) the velocity boundary condition on the sphere
ug = ug sin(f) where:

U\ — | =
(%)
(-96(2)° +20(2)" — 23(2)° + (4(2)* + 1) —1)

ar (4(k)2 +1)7 . ;
2

and where we have written the scaling of length, h/a,

explicitly for clarity.
To compare total nutrient fluxes and times around this
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Figure S.7. Comparison of t;, the time for the smallest eddy
to recirculate, versus 0 for three different disk radii, rq,: (+)
ra = 0.075., (x) rq¢ = 0.15, and (o) rq = 0.3. As usual, 74 is
non-dimensionalized by h. In (a) results are unscaled while in
(b) results are scaled to account for changing rq, with angles
divided by r(l/2 and times divided by r;15/4. We note that
despite the r;4 eddy recirculation time dependence shown in

Fig. 6, a scaling of time by r;15/4 collapses this data best.

Figure S.8. Schematic of geometry for velocity calculations.
Dotted line represents an axis of symmetry. Left diagram
is for the stokeslet calculations in Appendix A where the
stokeslet is represented by a gray arrow. In the middle is a
schematic of the sphere model in §IV, with the general spher-
ical coordinates to the far right.

spherical model for an organism to those for the stokeslet
model, we multiply the total nutrient fluxes computed
from the spherical model by a/h and times by (a/h)? so
that they match the stokeslet model scaling used in the
rest of this paper.
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